Strategic Electrification in the Thermal Sector

Presented By:

EERMC Consultant Team
Rhode Island Office of Energy Resources

Date: November 8, 2021

Agenda

Context – 2021 Act on Climate & Heating Sector Transformation Report

Strategic Electrification in Other Jurisdictions

Looking Ahead – Thermal Electrification

4

Terminology

Strategic Electrification

Terminology

Strategic Electrification

2021 Act on Climate

Looking Ahead

7

Heating: 1/3 of RI Emissions

Rhode Island GHG Emissions by Sector (2015)

Note: Most but not all industrial GHG is related to heat generation, often for process heat.

Heating: 1/3 of RI Emissions

Rhode Island GHG Emissions by Sector (2015)

The Road to 100% **Renewable Electricity** by 2030 in Rhode Island The Brattle Group **Brattle**

Note: Most but not all industrial GHG is related to heat generation, often for process heat.

Primary Options

Space and water heat

Several primary options feasible across many applications/buildings

Decarbonized Fuel

Limited supply from lesscostly sources

Renewable gas/power-to-gas

(P2G) for gas customers

 Landfill gas, anaerobic digesters, gasification, synthetic gas

Biofuel or power-to-liquids

(P2L) for most other customers

Biodiesel, ethanol, synthetic fuels

Heat Pumps

Strategic Electrification

Air source heat pump (ASHP)

Ground source heat pump (GSHP)

Including GeoMicroDistrict

Industrial heat

- May be more specialized (e.g., high-temp)
- Possibly requires (decarbonized) fuel including hydrogen

11

Strategic Electrification in Other Jurisdictions

State	Legislation	Greenhouse Gas (GHG) Reduction Goal
Rhode Island	2021 Act on Climate	Achieve net-zero GHG emissions by 2050
Massachusetts	An Act Creating a Next-Generation Roadmap for Massachusetts Climate Policy	Reduce GHG emissions to 50% below 1990 levels by 2030, and achieve net-zero GHG emissions by 2050
Maine	An Act to Promote Clean Energy Jobs and to Establish the Maine Climate Council	Reduce GHG emissions to 45% below 1990 levels by 2030 and 80% below 1990 levels by 2050
Vermont	An Act Relating to Addressing Climate Change	Reduce GHG emissions to 40% below 1990 levels by 2030 and 80% below 1990 levels by 2050

Strategic Electrification - Rhode Island

- Program Design
 - Prescriptive rebates for Res and Small Biz customers
 - Central or Ducted Minisplit HP: \$350 per ton
 - Ductless Minisplit HP: \$350 per ton
 - MSHP Displacing Elec. Resistance Heat: \$1,250 per ton
 - Oil/Propane customers eligible for additional \$650 per ton through OER/Regional GHG Initiative (RGGI), so up to \$1,000 per ton
 - Avg. RI home size = 1,700 square ft., 30 Btu of heating output per square foot, 12,000 Btu per ton -> about 4 tons of HP capacity for average RI home
- Funding Sources
 - Ratepayer EE charges (SBC, FCM revenues, RGGI)
 - Fuel switching not incentivized using ratepayer funding

Strategic Electrification – Massachusetts

- Program Design
 - Prescriptive rebates for Res and Small Biz customers (\$250 per ton, \$1,250 per ton for Oil/Propane/Elec. Resistance customers)
 - Increasing incentives for 2022-2024
 Three-Year Plan
- Funding Sources
 - Ratepayer EE charges (SBC, FCM revenues, RGGI)
 - \$800 million investment in electrification for 2022-2024 Plan (about 20% of total Mass Save spending)

- Eligible Equipment
 - ASHPs, GSHPs, Variable Refrigerant Flow (VRF) systems
 - Exploring co-delivery model for weatherization (Wx) and HPs to properly size HP systems
 - Custom offerings for Large C&I and Multifamily
- Degree of Impact
 - 2022-2024 Plan will save 845,000
 mtCO₂e that will count toward 2030
 emissions reduction goal
 - Nearly 70,000 planned HP/HP Water
 Heater (HPWH) installations for 2022-2024, about 23,000 HP/HPWHs annually

Weatherization: building shell insulation and air sealing to improve energy efficiency and weather resistance

14

Strategic Electrification – Massachusetts

Integration w/Other Programs

- Cape and Vineyard Electrification Offering - pairing of HPs, solar, storage, and Wx for low- and

moderate-income customers

 First comprehensive offering for HPs, solar/storage, and Wx for low-income customers

- Also includes enhanced moderate-income incentives
- MA considering nonratepayer funding sources to support electrification while mitigating adverse bill impacts

Strategic Electrification – Maine

Cumulative Efficiency Maine Heat Pump Installations (through 2025)

- Program Design
 - Prescriptive rebates
 - Res \$400 per Tier 1 HP, \$800 per Tier 2 HP
 - IES \$2,000 per HP, \$400 for second HP
 - Small Biz \$1,600 per single-zone system, up to \$4,800
- Funding Sources
 - Ratepayer EE charges, RGGI, RPS compliance payments, federal grants
- Degree of Impact
 - Governor set goal to install 100,000 heat pumps between FY 2019-2025
 - Equivalent to about 1,240 HPs per 100k residents per year for 6 years
 - Workforce development priority

Strategic Electrification – Vermont

- Program Design
 - Prescriptive rebates (Res/Small Biz)
 - Ductless HPs \$350-\$450 per HP, sizedependent
 - Ducted HPs \$1,000-\$2,000 per HP, size-dependent
 - IES: Bonus rebate, ~\$200-\$800
- Funding Sources
 - Ratepayer EE charges, RGGI, FCM Revenues
- Degree of Impact
 - About 237,000 HPs (roughly 7,100 HPs annually from 2019-2050)
 needed to meet 2050 GHG
 reduction target of 90% below 1990 GHG emissions levels, in addition to other EE measures

What will it take to meet our commitments?

Thermal Electrification

- Thermal Electrification

 heat pumps for both heating
 & cooling
- Most developed clean heating technology in RI
- When electricity is decarbonized, so is heating

Looking Ahead

Initial Targets

20

Current Perspective

Areas of Focus

- Improving energy efficiency
 - Weatherization
 - Most efficient technologies
- Providing utility-based incentives to consumers
- Increasing education and awareness
- Identifying needs and gaps

Challenges

- Streamlining process for consumers
- Securing stable incentive funding
- Ensuring all needs are met throughout entire strategic process
 - Weatherized
 - Proper sizing
 - Proper usage
- Equity
 - Involving those with limited resources
 - Non-homeowners

Additional Resources

- Heating Sector Transformation Report
- National Grid Heat Pump Incentives
- Massachusetts GHG Reduction Goals
- Massachusetts 2022-2024 Plan Update Presentation
- Cape Light Cape and Vineyard Electrification Offering Bundled ASHP, Wx, Solar PV, and Storage
- <u>Efficiency Maine Heat Pump Incentives</u>
- Efficiency Maine Cumulative Program Results 2021 Testimony
- <u>Efficiency Vermont Heat Pump Incentives</u>
- Energy Action Network Vermont 2018 Annual Climate Change Progress Report

Economics for representative single family home with bookend scenario show no one "best solution"

Space Heat Economics – Average Annual Cost (2018 \$/yr)

- Bookend scenario assumes current fossil shares are retained (Rnbl Gas, Rnbl Oil), or that all heat is provided by GSHPs or ASHPs
 - ASHP bookend has higher electric peak and prices, natural gas volume unchanged
- Broadly similar costs when recognizing large uncertainty ranges
 - "Central" projections are quite uncertain; ranges likely more reliable
 - Annualized costs of decarbonized heating comparable to oil or propane, more than gas

Typical energy spending will likely be comparable to today (except perhaps for current gas customers)

Average Annual Total Energy Cost(2018 \$/yr)

Current (2020) Fossil vs Projected 2050 Decarbonized (Mixed Scenario Example)

Total energy wallet likely comparable to today for typical consumer (within uncertainty range)

- May be slightly higher for customers now using fossil gas heat (which is at historic lows)
- EV charging is likely cheaper than current motor fuel, offsetting other energy costs
- Not everyone is "typical" must recognize and mitigate impacts on disadvantaged consumers

HST Report –Future Considerations

- Feasibility in 30 years Weatherization/heat pump installations pose significant implementation challenges, given >400,000 residential/commercial buildings
- Work force requirements, especially for widespread heat pump deployment
 - Also workforce transition issue in fuel industries
- Customer preferences
 - Reluctance to give up gas for cooking, to endure disruption, etc.
- Existing codes, standards, zoning rules etc. may inhibit some technologies
- Long life of heating infrastructure creates challenges for altering it
- High up-front cost and cost uncertainties of heat pumps
 - The need for financing creates a barrier to adoption
- Geology may limit GSHP implementation
- To decarbonize heating, heat pumps require decarbonized electricity
- Air quality impacts of fuel burning (indoor from gas cooking; outdoor from gas and especially oil)
- Safety concerns of any gaseous fuel

15 minutes